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Weighted Multiple Hypothesis Testing
Procedures∗

Guolian Kang, Keying Ye, Nianjun Liu, David B. Allison, and Guimin Gao

Abstract

Multiple hypothesis testing is commonly used in genome research such as genome-wide stud-
ies and gene expression data analysis (Lin, 2005). The widely used Bonferroni procedure controls
the family-wise error rate (FWER) for multiple hypothesis testing, but has limited statistical power
as the number of hypotheses tested increases. The power of multiple testing procedures can be in-
creased by using weighted p-values (Genovese et al., 2006). The weights for the p-values can be
estimated by using certain prior information. Wasserman and Roeder (2006) described a weighted
Bonferroni procedure, which incorporates weighted p-values into the Bonferroni procedure, and
Rubin et al. (2006) and Wasserman and Roeder (2006) estimated the optimal weights that max-
imize the power of the weighted Bonferroni procedure under the assumption that the means of
the test statistics in the multiple testing are known (these weights are called optimal Bonferroni
weights). This weighted Bonferroni procedure controls FWER and can have higher power than
the Bonferroni procedure, especially when the optimal Bonferroni weights are used. To further
improve the power of the weighted Bonferroni procedure, first we propose a weighted Šidák pro-
cedure that incorporates weighted p-values into the Šidák procedure, and then we estimate the
optimal weights that maximize the average power of the weighted Šidák procedure under the as-
sumption that the means of the test statistics in the multiple testing are known (these weights are
called optimal Šidák weights). This weighted Šidák procedure can have higher power than the
weighted Bonferroni procedure. Second, we develop a generalized sequential (GS) Šidák pro-
cedure that incorporates weighted p-values into the sequential Šidák procedure (Scherrer, 1984).
This GS Šidák procedure is an extension of and has higher power than the GS Bonferroni pro-
cedure of Holm (1979). Finally, under the assumption that the means of the test statistics in the
multiple testing are known, we incorporate the optimal Šidák weights and the optimal Bonferroni
weights into the GS Šidák procedure and the GS Bonferroni procedure, respectively. Theoretical
proof and/or simulation studies show that the GS Šidák procedure can have higher power than
the GS Bonferroni procedure when their corresponding optimal weights are used, and that both
of these GS procedures can have much higher power than the weighted Šidák and the weighted
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Bonferroni procedures. All proposed procedures control the FWER well and are useful when prior
information is available to estimate the weights.

KEYWORDS: weight, multiple hypothesis testing, Bonferroni procedure, Šidák procedure, family-
wise error rate



1 Introduction 
 
Multiple hypothesis testing involves testing multiple hypotheses simultaneously; 
each hypothesis is associated with a test statistic (Rubin et al., 2006). Multiple 
hypothesis testing is a common problem in genome research, such as genome-
wide studies and gene expression data analysis (Lin, 2005). For multiple 
hypothesis testing, a traditional criterion for error (type I) control is the family-
wise error rate (FWER), which is the probability of rejecting one or more true null 
hypotheses (Hochberg and Tamhane, 1987; Lin, 2005).  
 The Bonferroni procedure (Bonferroni, 1937) and the Šidák procedure 
(Šidák, 1967) are two well-known methods for controlling FWER with 
computational simplicity and wide applicability (Olejnik et al., 1997). However, 
both of these methods have limited statistical power as the number of hypotheses 
tested (m) increases (Nakagawa, 2004). Holm (1979) proposed a (step-down) 
sequential Bonferroni procedure which has slightly higher power than the 
Bonferroni procedure but there is little difference between these two procedures 
when the number of tests (m) is large (Lin, 2005). As an extension of the (step-
down) sequential Bonferroni procedure, Holm (1979) proposed a generalized 
sequential (GS) Bonferroni procedure by using different weights for hypotheses 
of different importance. Although Holm did not show how to estimate the 
weights, the method has the potential to improve the power of multiple hypothesis 
testing when prior information is available to estimate the weights. 

Rubin et al. (2006) and Wasserman and Roeder (2006) proposed a 
weighted Bonferroni procedure that adjusts p-values by using optimal weights. 
These optimal weights were calculated by maximizing the average power of the 
weighted Bonferroni procedure under the assumption that the means of all test 
statistics are known, and these weights are called optimal Bonferroni weights. 
Under such assumption, the average power of the weighted Bonferroni procedure 
is much higher than that of the Bonferroni procedure (Rubin et al., 2006; 
Genovese et al., 2006; Wasserman and Roeder, 2006). In practice, the means of 
the test statistics are unknown. However, if some prior information is available to 
estimate the means, this weighted Bonferroni procedure can be more powerful 
than the Bonferroni procedure (Rubin et al., 2006; Wasserman and Roeder, 2006; 
Roeder et al., 2006; Roeder et al., 2007). 

The purpose of this study is to develop more powerful weighted 
hypothesis testing procedures as extensions of the weighted Bonferroni procedure. 
First, we propose a weighted Šidák procedure, and then under the assumption that 
the means of all test statistics are known, we estimate the optimal weights 
maximizing the average power of the weighted Šidák procedure (these weights 
are called optimal Šidák weights). The weighted Šidák procedure has slightly 
higher power than the weighted Bonferroni procedure. Second, we develop a GS 
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Šidák procedure as an extension of the GS Bonferroni procedure of Holm (1979) 
and the sequential Šidák procedure (Scherrer, 1984). Finally, assuming that the 
means of all test statistics are known, we incorporate the optimal Šidák weights 
and the optimal Bonferroni weights into the GS Šidák procedure and the GS 
Bonferroni procedure, respectively. Theoretical proof and/or simulation studies 
show that, using their corresponding optimal weights, the GS Šidák procedure has 
slightly higher power than the GS Bonferroni procedure, and that both GS Šidák 
procedure and GS Bonferroni procedure have much higher power than the 
weighted Šidák procedure and the weighted Bonferroni procedure. All the 
proposed procedures can control the FWER well.  
 
2 Methods 
 
2.1 Notations 
 
Consider testing m (null) hypotheses ),,,( 21 mHHH L=H  with corresponding 
test statistics Z = (Z1, Z2, …, Zm), where we assume that iZ  follows normal 
distribution of )1,( iN μ , and all iZ ’s are independent. For simplicity, in this 
paper, we only present the results for one-sided tests. Similar results for two-sided 
tests can easily be obtained. Thus, for the i-th test, the (null) hypothesis is 

0: =iiH μ , and the corresponding alternative hypothesis is 0: >iiH μ . Suppose 
that there are 1m  true null hypotheses and 2m  false null hypotheses among all 
hypotheses in H, where 2m  = m - 1m . Let H0 denote all the true null hypotheses in 
H. Let ),,,( 21 mppp L=p  denote the p-values associated with the hypotheses 

),,,( 21 mHHH L . Let ),,,( 21 mμμμ L=μ  denote the means of the test 
statistics Z .  

As described earlier, FWER is the probability of falsely rejecting at least 
one true null hypothesis (Hochberg and Tamhane, 1987), which can be written as  

 
( )0| oneleast at  rejectingPrFWER Η∈= ii HH . 

 
A multiple testing procedure is said to control the family-wise error rate at a 
significance level α  if α≤FWER . 

The power for a single test is called per-hypothesis power. For a single test 
with hypothesis Hi, the per-hypothesis power is the probability of rejecting Hi 
given that the alternative hypothesis iH  is true, i.e., Pr(rejecting iH | 0>iμ ). For 
multiple hypotheses testing, Roeder et al. (2007) defined the average power of a 
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testing procedure as the average value of per-hypothesis powers of the 2m  tests 

associated with the false null hypotheses: ( )∑
>

>
0:2

0| rejectingPr1

ii
iiH

m μ

μ . 

 
2.2 Weighted Bonferroni procedure and optimal Bonferroni weights 
 
2.2.1 Weighted Bonferroni procedure 
 

In the Bonferroni procedure, if
m

p j
α

≤ , then reject the null hypothesis jH ; 

otherwise, it is failed to reject jH  (j = 1, …, m). The power of multiple testing 
procedures can be increased by using weighted p-values (Genovese et al., 2006). 
Holm appears to be the first one proposing the idea of the weighted Bonferroni 
procedure, which incorporates weighted p-values into the Bonferroni procedure 
(Holm, 1979). Wasserman and Roeder (2006) provided a clear description of the 
weighted Bonferroni procedure as follows. Given nonnegative weights 

),,,( 21 mwww L  for the tests associated with the hypotheses ),,,( 21 mHHH L ,  
where 
 

.11
1

=∑
=

m

j
jw

m
                                                    (1) 

 

For hypothesis jH  ( mj ≤≤1 ), when wj > 0, reject jH  if 
mw

p

j

j α
≤ , and fail to 

reject jH  when wj = 0. 
This procedure controls FWER at level α. The weights ),,,( 21 mwww L  

can be specified by using certain prior information available to the researcher. For 
example, in genome-wide association studies, the prior information can be linkage 
signals or results from gene expression analyses. Roeder et al. (2006) proposed a 
method to estimate weights by using linkage data to weight association p-values 
in association studies. However, how to estimate the optimal weights in multiple 
testing is still a topic to be further investigated (see also the section on discussion). 
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2.2.2 Optimal Bonferroni weights 
 
Rubin et al. (2006) and Wasserman and Roeder (2006) independently proposed 
very similar approaches to estimate the optimal weights by maximizing the 
average power of the procedure, assuming that the means ),,,( 21 mμμμ L=μ  are 
known. We call these optimal weights optimal Bonferroni weights and they are 
calculated (Wasserman and Roeder, 2006) by 
 

( )0
2

>⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
+Φ= j

j

j
j Imw μ

μ
μ

α
,                                      (2) 

 
where )(xΦ  is the upper tail probability of a standard normal cumulative 
distribution function (CDF) (i.e., )(xΦ  = 1- )(xΦ  and )(xΦ  denotes the CDF of 
the standard normal distribution) and Δ  is the constant that satisfies equations (1) 
and (2) i.e.   
 

   ( )∑
=

=>⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
+Φ

m

j
j

j

j Im
m 1

.0
2

1 αμ
μ

μ
α

                                  (3) 

 
As an illustrative example, Figure 1 shows the optimal Bonferroni weights 

as a function of the means μj in a multiple testing with 100 tests. The means μ 
vary from 1 to 7 in increment of 6/99 = 0.0606. When the means μj are small, the 
optimal weights increase with the increase of μj but when μj are large enough, the 
optimal weights decrease with the increase of μj. In other words, the weighted 
Bonferroni procedure offers large weights (often > 1) to the tests with midrange 
of means and offers small weights (often < 1) to tests with small or large means 
(Wasserman and Roeder, 2006). Dividing the p-value by a weight w > 1 increases 
the probability of rejecting the corresponding null hypothesis, and dividing the p-
value by a weight 0 < w < 1 decreases the probability of rejecting the 
corresponding null hypothesis. However, in most situations, even though the tests 
with large means are assigned small weights (<1), the corresponding hypotheses 
can still be rejected because the related p-values are very small.  The weighted 
Bonferroni procedure using these optimal weights can have much higher power 
than the Bonferroni procedure when the means (μ) of the test statistics are given 
or given prior information that can be used for estimating the means (Roeder et al., 
2006, 2007; Rubin et al., 2006; Wasserman and Roeder, 2006). 
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Figure 1. Distribution of optimal Bonferroni weights for a multiple testing 
procedure with m = 100 tests. μ  are the means of the test statistics, and vary from 
1 to 7. 

 
 
2.3 Weighted Šidák procedure and optimal Šidák weights 
 
Since the Šidák procedure has higher power than the Bonferroni procedure for 
independent tests (Simes, 1986), we propose a weighted Šidák procedure that 
incorporates weighted p-values into the Šidák procedure as an extension of the 
weighted Bonferroni procedure. We also describe how to calculate the optimal 
weights for the weighted Šidák procedure assuming means of the test statistics are 
known.  
 
2.3.1 Weighted Šidák procedure 
 
In the Šidák procedure (Šidák, 1967), for any null hypothesis jH  ( mj ≤≤1 ), if 

m
jp

1

)1(1 α−−≤ ,  then reject Hj. The Šidák procedure controls the FWER at level 
α.  Now we propose a weighted Šidák procedure by using weighted p-values as 
follows: given a set of nonnegative weights ),,,( 21 mwww L  specified for 
independent tests associated with the hypotheses (H1, H2, …, Hm) such that 
equation (1) holds (i.e., ∑−

i iwm 1 = 1), for hypothesis Hj ( mj ≤≤1 ), when wj > 0, 
if  
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m
w

j

j

p )1(1 α−−≤  or equivalently ( )m
w

j
jp

1
1

1)1( α−≥− ,                   (4) 
 

then reject the null hypothesis Hj; on the other hand, when  wj = 0, do not reject Hj. 

In this article we denote the weighted p-value jw
jp

1

)1( − as Sj. Therefore, (4) can 

be written as Sj ≥ ( )m
1

1 α− .  
 
Theorem 1. Suppose m tests are independent, then the weighted Šidák procedure 
controls the family-wise error rate at a significance level α . 
 
Proof. P(failing to reject any true null hypotheses in H0)  
 

= ( )∏ −−>Ρ
Η∈ 0:

/)1(1
j

j

Hj

mw
jp α  ∏ −=

Η∈ 0:

/)1(
j

j

Hj

mwα  = 
mw

jHj
j∑

Η∈− 0:)1( α = 1- α, 

 
where, pj follows standard uniform distribution when Hj ∈ H0. Since FWER =1 – 
P(failing to reject any true null hypotheses in H0), then Theorem 1 follows. ■ 
 

From the Taylor series expansions, we obtain 
 

m
w

j

j

w
m

)1(1 αα
−−≤ . 

 
Based on this inequality, when the same pre-determined weights ),,,( 21 mwww L  
are used by the weighted Šidák procedure and the weighted Bonferroni procedure, 
if any hypothesis jH  is rejected by the weighted Bonferroni procedure (i.e., 

jj w
m

p α
≤ ), then it must be rejected by the weighted Šidák procedure (i.e., 

m
w

j

j

p )1(1 α−−≤ ). Thus, we have Theorem 2. 
 
Theorem 2. For m independent tests, if the same pre-determined weights 

),,,( 21 mwww L are used in the weighted Šidák procedure and the weighted 
Bonferroni procedure, then the weighted Šidák procedure has higher average 
power than the weighted Bonferroni procedure. 
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Remark 1. If all weights wj = 1, then the weighted Šidák procedure becomes the 
Šidák procedure. The weighted Šidák procedure can have higher power than the 
Šidák procedure if the weights are selected appropriately. 
 
2.3.2 Optimal Šidák weights  
 
As stated earlier, how to estimate optimal weights by using the prior information 
still needs further investigation. Here, we derive the optimal weights that 
maximize the average power of the weighted Šidák procedure under the 
assumption that the means ),,,( 21 mμμμ L  are known. These optimal weights are 
called optimal Šidák weights, which is an extension of the optimal Bonferroni 
weights of Wasserman and Roeder (2006).  

For any specified weights ),,,( 21 mwww L , the per-hypothesis power for 
the single test with hypothesis Hj in the weighted Šidák procedure is 

 

.)1(10)1(1 1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−ΦΦ=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
>−−<Ρ= −

j
m
w

j
m
w

jj

jj

pPower μαμα  

 
The average power of the weighted Šidák procedure is 
 

PWaverage ∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−ΦΦ=

>

−

0:

1

2

)1(11
j

j

j
j

m
w

m μ
μα . 

 
To find the optimal weights that maximize this average power subject to 

constraint of equation (1), Lagrange method was used to obtain conditional 
extremum of PWaverage.  
 
Theorem 3. Given FWER being α and known means ),,,( 21 mμμμ L  of the m 
independent test statistics (Z1, Z2, …, Zm),  the optimal non-negative weights 

),,,( 21 mwww L  that maximize the average power of the weighted Šidák 
procedure subject to constraint of equation (1) can be obtained by solving  
inequalities wi ≥ 0, equations (1) and    
 

( ) ( )
2

)1(11ln
2

/1 imw
i

i i

m
w

c
μ

αμα −−−Φ=−− − , for i=1, …, m,              (5) 

 
where c is a constant (given in Appendix A).    
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The proof of this theorem is given in Appendix A. The inequalities and equations 
can be solved by using the “nlminb()” function in R. 

In the following simulation studies we will show that the weighted Šidák 
procedure using the optimal Šidák weights can have higher power than the 
weighted Bonferroni procedure using the optimal Bonferroni weights and that the 
weighted Šidák procedure using the optimal Šidák weights can have much higher 
power than the Šidák procedure. 

 
2.4 GS Bonferroni procedure and GS Šidák procedure 
 
Holm (1979) introduced a GS Bonferroni procedure that is a step-down procedure 
using ordered weighted p-values. If the (unknown) weights used in the procedure 
are estimated appropriately by using prior information, the procedure can have 
higher power than the weighted Bonferroni procedure (also see below). In this 
section, we first review this GS Bonferroni procedure, and then we propose a GS 
Šidák procedure as an extension of the GS Bonferroni procedure. 

When assuming that the means of the statistics are known, it is difficult to 
derive the optimal weights by maximizing the average power of these GS 
procedures as done before for the weighted Bonferroni and the weighted Šidák 
procedures. We incorporate the optimal Bonferroni (Šidák) weights described in 
Section 2.2 (2.3) into the GS Bonferroni (Šidák) procedure. We will show below 
that when these optimal weights are used, the GS Bonferroni (Šidák) procedure 
has higher power than the weighted Bonferroni (Šidák) procedure. 
 
2.4.1 GS Bonferroni procedure 
 
Given nonnegative weights ( mwww ,,, 21 L ) for the m tests associated with 
hypotheses (H1, H2, …, Hm),  (note that it is not necessary to satisfy the condition 

1
1

1 =∑
=

−
m

i
iwm ), if any weight wi = 0, then do not reject the corresponding 

hypothesis Hi. For the remaining hypotheses with weights wi > 0, define
i

i
i w

p
B =  

(i = 1, 2, …, m),  which are called B-values (i.e., weighted p-values). Let 
)()2()1( mBBB ≤≤≤ L  be the ordered B-values, )()2()1( ,,, mHHH L  be the 

corresponding hypotheses and )()2()1( ,,, mwww L  be the corresponding weights. 
Then the GS Bonferroni procedure (Holm, 1979) can be described as follows:  
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Step 1. If 
∑

>

=

m

i
iw

B

1
)(

)1(
α , stop the procedure; otherwise, reject )1(H  and go to the 

next step.  
… 

Step j. If
∑

>

=

m

ji
i

j
w

B
)(

)(
α , stop the procedure; otherwise, reject )( jH  and go to the 

next step. 
…. 
Continue these steps until the procedure is stopped or all B-values have been 
processed. 

This procedure controls FWER at level α. If we set all weights wj equal to 

1, the inequality
∑

>

=

m

ji
i

j
w

B
)(

)(
α  in step j becomes 

1)( +−
>

jm
B j

α and the GS 

Bonferroni procedure becomes the sequential Bonferroni procedure (Holm, 1979). 
This GS Bonferroni procedure can have higher power than the sequential 
Bonferroni procedure when the weights are chosen properly (Holm, 1979).  

Now we compare the power of the GS Bonferroni procedure and the 
weighted Bonferroni procedure when the same pre-determined weights are used 
in these two procedures. For pre-specified weight ( )()2()1( ,,, mwww L ) associated 

with hypotheses ( )()2()1( ,,, mHHH L ) such that 1
1

1 =∑
=

−
m

j
jwm (i.e., 1

1
)(

1 =∑
=

−
m

j
jwm ), 

if any false hypothesis H(j) is rejected by the weighted Bonferroni procedure, that 

is, 
m

B j
α

≤)(  is true, then 
∑
=

≤ m

ji
i

j

w
B

)(

)(
α . Since mw

m

ji
i∑

=

≤)( , we have 

 

∑
=

≤≤≤≤≤ m

ji
i

j

wm
BBB

)(

)()2()1(
αα

K . 

 
Thus, H(j) will also be rejected by the GS Bonferroni procedure. Therefore, we 
have Theorem 4. 
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Theorem 4. Given weights ),,,( 21 mwww L  for m independent tests such that 

1
1

1 =∑
=

−
m

i
iwm , the GS Bonferroni procedure has higher average power than the 

weighted Bonferroni procedure. 
 
2.4.2 GS Bonferroni procedure using the optimal Bonferroni weights 
 
As stated earlier, it is difficult to estimate the optimal weights that maximize the 
average power of the GS Bonferroni procedure under the assumption that the 
means of statistics are known.  Here we propose to use the optimal Bonferroni 
weights described in Section 2.2. When these optimal Bonferroni weights are 
used, from Theorem 4, we know that the GS Bonferroni procedure has higher 
average power than the weighted Bonferroni procedure. Our simulation studies 
will confirm this. 
 
2.4.3 GS Šidák procedure 
 
The GS Bonferroni procedure is based on the Bonferroni procedure. As stated 
earlier, the Šidák procedure has higher power than the Bonferroni procedure. 
Therefore, we propose a GS Šidák procedure.  

Given nonnegative weights ( mwww ,,, 21 L ) for the m tests associated with 
hypotheses ),,,( 21 mHHH L  (note that it is not necessary to satisfy the condition 

1
1

1 =∑
=

−
m

i
iwm ), if any weight wi = 0, do not reject the corresponding null 

hypothesis Hi. For the remaining hypotheses with weights wi > 0, let 

( ) iwii pS
1

1−=  (i = 1, 2, …, m) which are called S-values (i.e., weighted p-values).  
Let )()2()1( mSSS ≥≥≥ L  be the ordered S-values, )()2()1( ,,, mHHH L  be the 
corresponding hypotheses, and )()2()1( ,,, mwww L  be the corresponding weights. 
The GS Šidák procedure can be described as the following steps. 

Step 1. If 
∑

−< =

m

i
iw

S 1
)(

1

)1( )1( α , then stop the procedure; otherwise reject  )1(H  and 
go to the next step. 
….,  
Step j. When )1()1( , −jHH L  have been tested and rejected: if  

∑
−< =

m

ji
iw

jS
)(

1

)( )1( α ,                                                  (6) 
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stop the procedure; otherwise  reject the hypothesis )( jH , and go to the next step.  
…, 
Continue these steps until the procedure is stopped or all S-values have been 
processed. 
  
Theorem 5. Suppose m tests are independent, then the GS Šidák procedure 
controls family-wise error rate at a significant level α . 
 
Proof. Let I0 be the set of index subscripts for the true null hypotheses, I0 = {t: Ht 
∈H0}. Let lS

0I = tt S
0I∈max  denote the largest S-value among all St with t∈ I0. 

Among the ordered S-values, )()2()1( mSSS ≥≥≥ L , suppose at integer k, S(k) = 
lS

0I , then S(k) is first ordered S-value (from large to small) which is corresponding 
to a true null hypothesis in H0 (i.e., all the previous k-1 ordered S-values S(1), …, 
S(k-1) are corresponding to false null hypothesis), where, 1≤ k ≤ m - m1 + 1, and m1 
is the number of true hypotheses. According to the GS Šidák procedure, the event 
of failing to reject any true null hypotheses in H0 is equal to event that equation 
(6) holds for some j < k. The family-wise error rate is FWER =1 – P(failing to 
reject any  true null hypotheses in H0), and  
 
 P(failing to reject any true null hypotheses in H0) 
 

           ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −<≥⎟

⎠

⎞
⎜
⎝

⎛
−<= ∑

=

∑
==

m

ki
i

m

ji
i w

k

k

j

w
j SPSP )()( /1

)(
1

/1
)( 1)1( ααU  

 

( ) ( ) ( )∏ ⎟
⎠
⎞

⎜
⎝
⎛ −<−=∏ ⎟

⎠
⎞

⎜
⎝
⎛ −<=

∈

∑

∈

∑
==

00 II t

ww
t

t

w
t

m

ki
it

m

ki
i pPSP )()( /1/1/1 111 αα  

 

           ( ) ( ) ( ) ααα −>−=∏ ⎟
⎠
⎞

⎜
⎝
⎛ −<−= ∑∑∑

=
∈

=

∈
1111 )()( //

m

ki
it t

m

ki
it ww

t

ww
tpP 0I

0I
, 

 

where ∑∑
=

∈

m

ki
it t ww )(/

0I ≤ 1, and 1 - pt follows uniform distribution when t∈I0. ■ 

 
Now we compare the power of the GS Šidák procedure to that of the 

weighted Šidák procedure when both procedures use the same weights wj that 

satisfy 1
1

1 =∑
=

−
m

j
jwm (i.e., 1

1
)(

1 =∑
=

−
m

j
jwm ). If H(j) is rejected by the weighted Šidák 
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procedure, that is, S(j) ≥ m
1

)1( α−  is true (see inequality (4)), then S(j) ≥ 
∑
=−
m

ji
iw )(1

)1( α . Since ,)( mw
m

ji
i∑ ≤

=
 we have 

 

( ) ( )
∑
=

−≥−≥≥≥≥

m

ji
iw

m
jSSS

)(1

11 /1
)()2()1( ααK . 

 
Thus, H(j) will also be rejected by the GS Šidák procedure, and we have 

Theorem 6.  
 

Theorem 6. Given weights ),,,( 21 mwww L  for m independent tests that satisfy 

1
1

1 =∑
=

−
m

j
jwm , then the GS Šidák procedure has higher power than the weighted 

Šidák procedure. 
 

Furthermore, we compare the power of the GS Šidák procedure to that of 
the GS Bonferroni procedure when the same pre-specified weights are used in 
these two procedures.  
 
Theorem 7. For m independent tests, if the same weights ),,,( 21 mwww L are used 
in the GS Šidák procedure and GS Bonferroni procedure, then the GS Šidák 
procedure has higher average power than the GS Bonferroni procedure. 
 
Proof. From the definition of B-value ( iii wpB /= ) and S-value 

( ( ) iw
ii pS /11−= ), we know Bi (Si) is a monotonically deceasing (increasing) 

function of wi. Suppose that )()2()1( mBBB ≤≤≤ L  and )()2()1( mSSS ≥≥≥ L  are 
associated with the same hypotheses )()2()1( ,,, mHHH L . Below we show that for 

any hypothesis )( jH , if ∑≤
=

m

ji
ij wB )()( /α , then 

∑
=−≥
m

ji
iw

jS
)(/1

)( )1( α , from which we 

know that the GS Šidák procedure has higher power than the GS Bonferroni 
procedure. 

If ∑≤
=

m

ji
ij wB )()( /α , from the Taylor series expansions, we have 
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.)1(1/
)()( /
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∑
=−−≤∑≤

=

m
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ijj wwp αα  

 

Thus, ( )
∑
=−≥−=
m

ji
i

i
w

w
ij pS

)(/1
/1

)( )1(1 α . ■ 
 
Remark 2. If setting all the weights equal (to 1), then the GS Šidák procedure 
becomes the sequential Šidák procedure (Scherrer, 1984). 
 
2.4.4 GS Šidák procedure using the optimal Šidák weights 
 
In the GS Šidák procedure, a major issue is how to calculate the weights. As we 
stated before, it is difficult to derive optimal weights that maximize the average 
power of the GS Šidák procedure under the assumption that the means of the 
statistics are known. Here, under this assumption, we suggest using the optimal 
Šidák weights calculated by equation (5). From Theorem 7, the GS Šidák 
procedure has higher average power than the weighted Šidák procedure when the 
optimal Šidák weights are used by these two procedures. 

We will show that the GS Šidák procedure using the optimal Šidák 
weights has higher power than the GS Bonferroni procedure using the optimal 
Bonferroni weights by simulation studies (see below). It appears to be difficult to 
prove this statement theoretically because the optimal Šidák weights are not the 
same as the Bonferroni weights.  
 
3 Simulation studies and results 
 
To further evaluate the performance of the proposed testing procedures, we 
compared by simulation studies the average power of six multiple testing 
procedures: the Šidák procedure, the Bonferroni procedure, the weighted Šidák 
(Bonferroni) procedure using the optimal Šidák (Bonferroni) weights, and the GS 
Šidák (Bonferroni) procedure using the optimal Šidák (Bonferroni) weights. 
 
3.1 Assuming true means ),,,( 21 mμμμ L=μ known 
 
When we assume that the means of statistics are known, for each true null 
hypothesis jH : μj = 0, the weight is assigned to zero in each procedure using 
weights. Thus, all true null hypotheses will not be rejected in these procedures. In 
other words, the FWER is equal to zero in the simulation studies with known 
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means of statistics. Thus, we only compare the average power among these six 
procedures.  

We simulated datasets in a similar way to Rubin et al. (2006). Each 
simulated dataset X = (Xi,j)n×m consisted of n =100 i.i.d observations, where each 
observation corresponded to a subject and was a vector of measurements of m = 
1,000 independent covariates, and Xi,j  was a measurement of covariate j at the i-th 
observation. For each covariate j, we assumed that Xi,j ~ N( jγ , 1), i = 1,… , n,  

and we implemented a test with statistic ∑=
=

n

i
jij X

n
Z

1
,

1  to test the null 

hypothesis γj = 0 against the alternative γj > 0.  Using the central limit theorem, 

jZ  follows an asymptotic distribution of N(uj, 1), where jj nu γ= (Rubin et al., 
2006). Thus, testing hypothesis 0=jγ  is equivalent to testing hypothesis Hj: 

0=ju .  
When generating each dataset that was associated with 1,000 covariates, 

we randomly chose 50 covariates and set the means γj > 0 for these 50 covariates 
(i.e., μj > 0 for the corresponding test statistic Zj), and set γj = 0 for the other 950 
covariates.  In our simulation studies, we considered two scenarios for the 50 non-
zero γj. In Scenario 1, we set the 50 non-zero γj equal to a common value γ that 
varies as a simulation parameter. We considered γ between 0.1 and 0.5, in 
increments of 0.1 (correspondingly, γnu =  are between 1 and 5, in increments 
of 1). We simulated 1,000 datasets corresponding to each of these γ values. In 
Scenario 2, for the 50 non-zero γj, we set the first ten γj  = 0.1 (μj = 1), the second 
ten γj  = 0.2 (μj = 2), …, and the fifth ten γj  = 0.5 (μj = 5). We simulated 1,000 
datasets for Scenario 2. 

Table 1 shows the results of the estimated average power of the six 
multiple testing procedures in Scenarios 1 and 2. From Table 1, we can see that 
the GS Šidák, weighted Šidák, and Šidák procedures have slightly higher 
estimated average power than the corresponding GS Bonferroni, weighted 
Bonferroni, and Bonferroni procedures, and that the GS Šidák procedure is most 
powerful among the six procedures.  The GS Šidák procedure and the GS 
Bonferroni procedure can have much higher power than both the weighted Šidák 
procedure and the weighted Bonferroni procedure. For example, in Scenario 1, 
when 3=μ , the estimated average power of the GS Šidák procedure, GS 
Bonferroni procedure, the weighted Šidák procedure, and the weighted 
Bonferroni procedure is 0.5820, 0.5792, 0.4670 and 0.4639, respectively (see 
Table 1).  
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Table 1. The estimated average power of the six multiple testing procedures over 
1,000 replicated data sets when given the means of the test statistics. (α =0.05, 

502 =m , m =1000 and n =100).   

Scenario  
μ Bonfa Šidák W-

Bonfb 
W-

Šidákc 
GS-

Bonfd 
GS-

Šidáke 

Scenario 1 0.0019 0.0020 0.0183 0.0186 0.0453 0.0459 
 2 0.0293 0.0298 0.1378 0.1394 0.2253 0.2274 
 3 0.1869 0.1886 0.4639 0.4670 0.5792 0.5820 
 4 0.5436 0.5460 0.8185 0.8205 0.8781 0.8796 
 5 0.8664 0.8677 0.9719 0.9724 0.9838 0.9841 
Scenario  0.3256 0.3267 0.4988 0.5002 0.5419 0.5432 

a Bonf = Bonferroni; b W-Bonf = Weighted Bonferroni; c W-Šidák = Weighted 
Šidák; d GS-Bonf = Generalized sequential Bonferroni; e GS-Šidák = Generalized 
sequential Šidák 
 
3.2 True means ),,,( 21 mμμμ L=μ unknown 
 
In previous sections, all weights are calculated under the assumption that the 
means ),,,( 21 mμμμ L=μ of statistics are known. However, in real data analysis, 
the means μ are usually unknown. The means μ can be estimated by using certain 
prior information. How to effectively estimate μ is still a topic to be further 
investigated. Rubin et al. (2006) described a data-splitting method, which splits 
the full data X into two parts, X1 and X2, with proportion π and 1- π of the 
original data X, respectively. Data X1 is used to estimate the means of the 
standardized test statistics and data X2 is used to test the hypotheses. They showed 
that if some prior information, such as the order of means (μ1, μ2,…, μm), is 
available, by using the data-splitting method the weighted Bonferroni procedure 
has higher power than the Bonferroni procedure. In genetic association studies, 
Roeder et al. (2007) described a two-step approach to estimate the means (μ1, 
μ2,…, μm) by using prior information such as reported linkage peaks, results of 
previously genome wide association studies, or results of gene expression studies.  

It is beyond of the scope of this study to determine how to effectively 
estimate the means (μ1, μ2,…, μm) by using prior information. To show the 
performance of our proposed procedures when estimated means are used, as an 
example, we implemented our proposed procedures by incorporating the data-
splitting method and applied these methods to the simulated Scenarios 1-2 data 
sets described in the previous section. The only exception is that we assume here 
that the first 950 covariates have means equal to zero and the last 50 covariates 
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have the common mean value γ >0. This fellows the assumption of Rubin et al. 
(2006) that the order of means (μ1, μ2,…, μm) is known. 

 
Table 2. The estimated FWERs and average power of the six multiple procedures 
over 1,000 replicated data sets when the means of the test statistics are unknown 
( 05.0=α , m =1000, 2m  = 50, n=100, andπ = 0.1 for data-splitting).  

Scenario μ  Bonfa Šidák W-
Bonfb 

W-
Šidákc 

GS-
Bonfd 

GS- 
Šidáke 

FWER 0.0610 0.0650 0.0180 0.0180 0.0180 0.0180 Scenario 1 1 Power 0.0017 0.0017 0.0091 0.0093 0.0092 0.0095 
FWER 0.0360 0.0370 0.0020 0.0020 0.0020 0.0020  2 Power 0.0278 0.0283 0.0996 0.1009 0.1071 0.1085 
FWER 0.0410 0.0430 0.0010 0.0010 0.0030 0.0030  3 Power 0.1835 0.1854 0.3766 0.3795 0.4523 0.4564 
FWER 0.0480 0.0500 0.0030 0.0030 0.0260 0.0270  4 Power 0.5422 0.5445 0.7427 0.7449 0.8707 0.8719 
FWER 0.0490 0.0490 0.0110 0.0110 0.0530 0.0540  5 Power 0.8746 0.8715 0.9342 0.9350 0.9772 0.9780 
FWER 0.0610 0.0630 0.0010 0.0010 0.0010 0.0010 Scenario 2  Power 0.3239 0.3251 0.4566 0.4581 0.5247 0.5262 

a Bonf = Bonferroni; b W-Bonf = Weighted Bonferroni; c W-Šidák = Weighted 
Šidák; d GS-Bonf = Generalized sequential Bonferroni; e GS-Šidák = Generalized 
sequential Šidák 
 

 For each simulated dataset, the Bonferroni procedure and the Šidák 
procedure were implemented on the entire dataset, while the other four procedures 
used the data-splitting method (under the assumption that the order of means 

),,,( 21 mμμμ L  is known). Table 2 shows the estimated average power and 
family-wise error rates of the six procedures for Scenarios 1 and 2. We only show 
the results with the proportion π of the first part X1 equal to 0.1.   

From Table 2, we can find that the weighted Šidák and the GS Šidák 
procedures have slightly higher estimated average power than the weighted 
Bonferroni and the GS Bonferroni procedures, respectively, and that the GS Šidák 
procedure has the highest estimated average power among these six procedures. 
For example, when μ is equal to 4, the estimated average power of the GS Šidák 
procedure is 0.8719. It is nearly 13% more than that of the weighted Bonferroni 
procedure (0.7427). In addition, it is interesting that the estimated average power 
of the six procedures is smaller than their estimated FWERs when μ is equal to 1. 
This occurs because the average power is the average (not cumulative value) of 

16

Statistical Applications in Genetics and Molecular Biology, Vol. 8 [2009], Iss. 1, Art. 23

http://www.bepress.com/sagmb/vol8/iss1/art23
DOI: 10.2202/1544-6115.1437



per-hypothesis powers for the 50 false null hypotheses, and the FWER is a 
cumulative value (not average) of type I error rates for 950 tests. 

From Table 2, we can also find that the six procedures can control FWERs 
quite well. Interestingly, the estimated FWERs are much lower in the four 
procedures using weights (i.e. the weighted Bonferroni, weighted Šidák, GS 
Bonferroni and GS Šidák) than in the two procedures without using weights 
(Bonferroni and Šidák). The reason is that the four weighted procedures used the 
prior information of the order of means of the test statistics.  
 
4 Discussion 
 
In this article, we propose a weighted Šidák procedure and a GS Šidák procedure 
for multiple hypotheses testing based on the weighted Bonferroni procedure. 
Under the assumption that the means of the test statistics are known, we further 
describe how to estimate the optimal Šidák weights which maximize the average 
power of the weighted Šidák procedure. We show that the weighted Šidák 
procedure using the optimal Šidák weights can have higher power that the 
weighted Bonferroni procedure using the optimal Bonferroni weights. 
Furthermore, we incorporate the optimal Šidák (Bonferroni) weights into the GS 
Šidák (Bonferroni) procedure. Using these optimal weights the GS Šidák 
(Bonferroni) procedures can have higher power than the corresponding weighted 
Šidák (Bonferroni) procedures, respectively, and the GS Šidák procedure often 
has the highest power among these procedures.    

For the multiple procedures using weights described in this article, how to 
estimate the weights ),,,( 21 mwww L  by using prior information is still an open 
problem. Several investigations have been reported in the literature. Roeder et al. 
(2006) used linkage data to estimate weights and adjust p-values in genome-wide 
association studies. Ionita-Laza et al. (2007) used between-family information to 
estimate weights and weighted association p-values calculated by use of within-
family information in family-based genome-wide association studies.  

It appears that the optimal Šidák weights and optimal Bonferroni weights 
have better property than the weights described in the previous paragraph because 
these optimal weights are based on maximizing the average power of the 
procedures. However, the optimal Šidák weights and optimal Bonferroni weights 
are calculated assuming that the means of test statistics are known, and in 
practice, these means are unknown. The means of test statistics may be estimated 
by using prior information (Roeder et al., 2007). When certain prior information 
is available to estimate the means of statistics, the procedures proposed in this 
paper are useful and can have much higher power than the widely used 
Bonferroni procedure. However, how to use prior information to estimate the 
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optimal Šidák weights and optimal Bonferroni weights is still a challenge. We 
will pursue studies on this topic in the future. 

Most of the proposed methods focus on the normal distribution model and 
one-sided tests. It is trivial to modify the formulas to handle two-sided tests for 
normal distribution and 2χ distribution. All the proposed methods assume 
independence among the multiple tests. This assumption is very conservative. In a 
real data analysis, multiple tests are often highly correlated. For example, in 
genome-wide association studies, the tests for different markers may be correlated 
due to linkage disequilibrium among the markers (Conneely and Boehnke, 2007; 
Nyholt, 2004). How to extend our proposed method to account for correlation 
among tests is another issue we will pursue in the future. 

All the proposed methods focus on the control of the family-wise error 
rate for multiple testing. However, a similar idea can be applied to control false 
discovery rate by using weighed p-value (see also Genovese et al., 2006).  
 
Appendix A. Proof of Theorem 3. 
 
Proof. For the m independent test statistics (Z1, Z2, …, Zm), we estimate the 
optimal weights wj that maximize the average power with the constraint 

mw
m

j
j =∑

=1
. We set wj = 0 if μj = 0. For the remaining test statistics with μj > 0, the 

corresponding Lagrange function is  
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where )(xφ  is the probability density function of the standard normal distribution. 
From (A.1), we have 
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ln 2mm . Therefore, w  satisfies the equations (5). 

To make sure that equations (5) provide optimal values, we need to 
investigate the second derivatives of the Lagrange function for wi. 
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where, ( )mwi /1 )1(1 αδ −−Φ= − . Note that the off-diagonal elements of the Hessian 
matrix are all zeroes.  We conclude that the Hessian matrix is negative definite.  
Consequently, the solutions of the weights are optimal. 
 
References 
 
Bonferroni, C. E.  (1937).  Teoria statistica delle classi e calcolo delle probabilita. 

In "Volume in Onore di Ricarrdo dalla Volta," Universita di Firenza, 1-62. 
 
Conneely, K. N. and Boehnke, M. (2007). So many correlated tests, so little time! 

Rapid adjustment of p values for multiple correlated tests. Am J Hum 
Genet 81:1158-1168. 

 
Genovese, C. R., Roeder, K. and Wasserman, L. (2006). False discovery control 

with p-value weighting. Biometrika 93:509-524. 
 
Hochberg, Y. and Tamhane, A. C. (1987). Multiple comparison procedures. New 

York: Wiley. 
 
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand J 

Stat 6:65-70. 
 
Ionita-Laza, I., McQueen, M. B., Laird, N. M. and Lange, C. (2007).  

Genomewide weighted hypothesis testing in family-based association 
studies, with an application to a 100K scan. Am J Hum Genet 81: 607-
614. 

 
Lin, D. Y. (2005). An efficient Monte Carlo approach to assessing statistical 

significance in genomic studies. Bioinformatics 21:781-787. 
 
Nakagawa, S. (2004). A farewell to Bonferroni: the problems of low statistical 

power and publication bias. Behavioral Ecology 14:1044-1045. 
 
Nyholt, D. R. (2004). A simple correction for multiple testing for single-

nucleotide-polymorphisms in linkage disequilibrium with each other. Am 
J Hum Genet 74: 765-769. 

 
Olejnik, S., Li, J. M., Huberty, C. J., Supattathum S.  (1997). Multiple testing and 

statistical power with modified Bonferroni procedures. J Educat 
Behavioral Statist 22: 389-406. 

20

Statistical Applications in Genetics and Molecular Biology, Vol. 8 [2009], Iss. 1, Art. 23

http://www.bepress.com/sagmb/vol8/iss1/art23
DOI: 10.2202/1544-6115.1437



Roeder, K., Bacanu, S., Wasserman, L., and Devlin, B. (2006). Using linkage 
genome scans to improve power of association scans. Am J Hum Genet 78: 
243-252. 

 
Roeder, K., Devlin, B. and Wasserman, L. (2007). Improving power in genome-

wide association studies: weights tip the scale. Genet Epidemiol 31: 741-
747. 

 
Rubin, D., Dudoit, S. and van der Laan, M. J. (2006). A method to increase the 

power of multiple testing procedures through sample splitting. U.C. 
Statistical Applications in Genetics and Molecular Biology 5: article 19.  

 
Scherrer, B. (1984). Biostatistique. G. Morin, Quebec, 850 pp. 

Šidák, Z. (1967). Rectangular confidence regions for the means of multivariate 
normal distributions. J Am Stat Assoc 62:626-633. 

 
Simes, R. J. (1986). An improved Bonferroni procedure for multiple tests of 

significance. Biometrika 73:751-754. 
 
Wasserman, L. and Roeder, K. (2006). Weighted hypothesis testing.             

(http://arxiv.org/abs/math.ST/0604172) (accessed July 5, 2007) 

21

Kang et al.: Weighted Multiple Hypothesis Testing Procedures

Published by The Berkeley Electronic Press, 2009


